Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 5, 2025
-
Digital learning environments are used frequently in K-12 classrooms. Such use can require skillful orchestration as teachers need to understand the affordances of the learning environment, sequence of activities, and when and how to intervene with students. Using a digital learning environment in a multidisciplinary classroom context makes the design of support materials for teachers and students even more essential. To design for effective teacher orchestration in the classroom, we created a comprehensive set of materials for our multidisciplinary digital learning environment. We employ the design-based intervention research framework to trace the contextual and practical iterations these materials underwent. Additionally, we provide next steps for our work and considerations for the broader community.more » « less
-
Recent years have seen growing awareness of the potential digital storytelling brings to creating engaging K-12 learning experiences. By fostering students’ interdisciplinary knowledge and skills, digital storytelling holds great promise for realizing positive impacts on student learning in language arts as well as STEM subjects. In parallel, researchers and practitioners increasingly acknowledge the importance of computational thinking in supporting K-12 students’ problem solving across subjects and grade levels, including science and elementary school. Integrating the unique affordances of digital storytelling and computational thinking offers significant potential; however, careful attention must be given to ensure students and teachers are properly supported and not overwhelmed. In this paper, we present our work on a narrative-centered learning environment that engages upper elementary students (ages 9 to 11) in computational thinking and physical science through the creation of interactive science narratives. Leveraging log data from a pilot study with 28 students using the learning environment, we analyze the narrative programs students created across multiple dimensions to better understand the nature of the resulting narratives. Furthermore, we examine automating this analysis using artificial intelligence techniques to support real-time adaptive feedback. Results indicate that the learning environment enabled students to create interactive digital stories demonstrating their understanding of physical science, computational thinking, and narrative concepts, while the automated assessment techniques showed promise for enabling real-time feedback and support.more » « less
-
Digital storytelling in combination with makerspace activities holds significant potential to engage students and support their learning. When students play, such as through makerspace activities, they engage in critical thinking and problem solving. In our work, we are joining storytelling with computational thinking (CT) practices, physical science exploration, and makerspace activities through a digital narrative-centered learning environment for elementary school. Learning within the environment is undergirded by makerspace play that centers on finding solutions to an open problem—how can stranded scientists on a remote island power up their village using found materials? The learning environment supports students’ CT practices and science content learning as they use and problem solve with physical energy conversion kits, culminating in their creation of an interactive story. We present here a brief case study of the ways students’ experiences with makerspace play support their problem solving and storytelling.more » « less
-
Digital storytelling, which combines traditional storytelling with digital tools, has seen growing popularity as a means of creating motivating problem-solving activities in K-12 education. Though an attractive potential solution to integrating language arts skills across topic areas such as computational thinking and science, better understanding of how to structure and support these activities is needed to increase adoption by teachers. Building on prior research on block-based programming for interactive storytelling, we present initial results from a study of 28 narrative programs created by upper elementary students that were collected in both classroom and extracurricular contexts. The narrative programs are evaluated across multiple dimensions to better understand the types of narrative programs being created by the students, characteristics of the students who created the narratives, and what types of support could most benefit the students in their narrative program construction. In addition to analyzing the student-created narrative programs, we also provide recommendations for promising system-generated and instructor-led supports.more » « less
An official website of the United States government

Full Text Available